Refroidissement d'un fer à cheval (Bac Spécialité Physique-Chimie – Métropole - mars 2022)

Corrigé réalisé par B. Louchart, professeur de Physique-Chimie © http://b.louchart.free.fr

1. Chauffage du fer

- 1. $m_{fer} = \rho_{fer} \times V_{fer} = 7,87 \times 104 = 818 \text{ g}$
- **2.** $\Delta U = m_{\text{fer}} c_{\text{fer}} (\theta_0 \theta_{\text{ext}}) = 818 \times 10^{-3} \times 440 \times (900 15) = 3.19 \times 10^5 \text{ J}$
- **3.** L'augmentation de température est liée à une augmentation de l'énergie cinétique microscopique (augmentation de l'agitation thermique).

2. Refroidissement du fer

2.1. Refroidissement à l'air libre

4. D'après le 1^{er} principe de la thermodynamique, $\Delta E_m + \Delta U = W + Q$

Or ici, $\Delta E_m = 0$ J et W = 0 J (en négligeant le travail reçu du maréchal-ferrant quand il martèle le fer à cheval)

On obtient donc : $\Delta U = Q$

De plus,
$$\Delta U = m_{fer} c_{fer} \Delta \theta$$
 et $Q = \Phi \times \Delta t = h_{air} S (\theta_{ext} - \theta) \times \Delta t$

$$\Rightarrow$$
 $m_{fer} c_{fer} \Delta \theta = h_{air} S (\theta_{ext} - \theta) \times \Delta t$

$$\Rightarrow \ \frac{\Delta \theta}{\Delta t} = \frac{h_{air}S}{m_{fer}c_{fer}} \ (\theta_{ext} - \theta) \ = \ \frac{1}{\tau} \ (\theta_{ext} - \theta) \ \ en \ posant \ \ \tau = \frac{m_{fer}c_{fer}}{h_{air}S}$$

$$\Rightarrow \frac{\Delta \theta}{\Delta t} = \frac{\theta_{ext}}{\tau} - \frac{\theta}{\tau}$$

$$\implies \frac{\Delta \theta}{\Delta t} + \frac{\theta}{\tau} = \frac{\theta_{ext}}{\tau}$$

Faisons tendre Δt vers 0.

$$\lim_{\Delta t \to 0} \ \frac{\Delta \theta}{\Delta t} = \ \frac{d\theta}{dt} \ \ , \ donc \ on \ obtient: \qquad \frac{d\theta}{dt} + \ \frac{\theta}{\tau} = \ \frac{\theta_{ext}}{\tau}$$

Remarque :

$$si \quad \theta \ (t) = \ (\theta_0 - \theta_{ext}) \times e^{-\frac{t}{\tau}} + \theta_{ext} \ \ , \ \ alors \quad \frac{d\theta}{dt} = \ (\theta_0 - \theta_{ext}) \times \left(-\frac{1}{\tau}\right) \ e^{-\frac{t}{\tau}} = - \ \frac{\theta_0 - \theta_{ext}}{\tau} \ \ e^{-\frac{t}{\tau}}$$

Pour vérifier si cette fonction est solution de l'équation différentielle obtenue à la question 4, calculons $\frac{d\theta}{dt} + \frac{\theta}{\tau}$:

$$\frac{d\theta}{dt} + \frac{\theta}{\tau} = -\frac{\theta_0 - \theta_{ext}}{\tau} e^{-\frac{t}{\tau}} + \frac{\theta_0 - \theta_{ext}}{\tau} \times e^{-\frac{t}{\tau}} + \frac{\theta_{ext}}{\tau} = \frac{\theta_{ext}}{\tau}$$

On retrouve le second membre de l'équation différentielle, donc la fonction $\theta = (\theta_0 - \theta_{ext}) \times e^{-\frac{t}{\tau}} + \theta_{ext}$ est bien solution de l'équation différentielle : $\frac{d\theta}{dt} + \frac{\theta}{\tau} = \frac{\theta_{ext}}{\tau}$

6. Le maréchal-ferrant pose le fer à cheval sur la face inférieure du sabot du cheval 2 minutes après l'avoir sorti de la forge.

Sa température vaut alors, selon le modèle précédent :

$$\theta \; (t'=2 \; min) = \; (\theta_0 - \theta_{ext}) \times e^{-\frac{t'}{\tau}} + \theta_{ext} \; = \; (900-15) \times e^{-\frac{2 \times 60}{880}} \; + \; 15 \; = \; 787^{\circ} C$$

La température du fer à cheval est donc encore très élevée quand il est posé. C'est pour cette raison que cela fume au niveau de la zone de contact avec le sabot.

2.2. Refroidissement dans l'eau avant la pose

7. Par analogie, on obtient : $\theta(t) = (\theta_1 - \theta_{ext}) \times e^{-\frac{t}{\tau_{eau}}} + \theta_{ext}$

avec
$$\theta_1 = 600^{\circ}C$$

et $\tau_{eau} = \frac{m_{fer}c_{fer}}{h} = \frac{818 \times 10^{-3} \times 440}{360 \times 293 \times 10^{-4}} = 34,1 \text{ s}$

Déterminons l'intant t_2 pour lequel la température vaut $\theta_{finale} = 40$ °C.

 θ (t₂) = θ _{finale}

$$\implies (\theta_1 - \theta_{ext}) \times e^{-\frac{t_2}{\tau_{eau}}} + \theta_{ext} \ = \ \theta_{finale}$$

$$\Rightarrow \ (\theta_1 - \theta_{ext}) \times e^{-\frac{t_2}{\tau_{eau}}} = \theta_{finale} - \theta_{ext}$$

$$\Rightarrow e^{-\frac{t_2}{\tau_{eau}}} = \frac{\theta_{finale} - \theta_{ext}}{\theta_1 - \theta_{ext}}$$

$$\Rightarrow -\frac{t_2}{\tau_{eau}} = \ln \left(\frac{\theta_{finale} - \theta_{ext}}{\theta_1 - \theta_{ext}} \right)$$

$$\Rightarrow t_2 = -\tau_{eau} \ln \left(\frac{\theta_{finale} - \theta_{ext}}{\theta_1 - \theta_{ext}} \right) = -34,1 \times \ln \left(\frac{40 - 15}{600 - 15} \right) = 108 \text{ s}$$

- **8.** Le modèle utilisé ne décrit pas correctement les phénomènes qui ont lieu. Plusieurs causes sont possibles :
 - le transfert thermique entre l'eau et le fer ne suit pas la loi de Newton
 - la température de l'eau n'est pas constante, et une partie passe à l'état gazeux