L'expérience des trous de Young (Bac Spécialité Physique-Chimie - Asie - mars 2022)

Corrigé réalisé par B. Louchart, professeur de Physique-Chimie © http://b.louchart.free.fr

Relation entre l'interfrange et la longueur d'onde

1.
$$\delta = n_{air} \times (S_2M - S_1M) = S_2M - S_1M$$
 car $n_{air} = 1$

2. D'après le théorème de Pythagore dans le triangle (S_1O_1M) , $S_1O_1^2 + O_1M^2 = S_1M^2$ $\Rightarrow S_1M^2 = D^2 + (x - \frac{b}{2})^2$

De même, d'après le théorème de Pythagore dans le triangle (S_2O_2M) , $S_2O_2^2 + O_2M^2 = S_2M^2$ $\Rightarrow S_2M^2 = D^2 + (x + \frac{b}{2})^2$

3. D'après les données, $S_2M^2 - S_1M^2 = 2D\delta$

$$\Rightarrow \delta = \frac{1}{2D} \left[D^2 + (x + \frac{b}{2})^2 - D^2 - (x - \frac{b}{2})^2 \right] = \frac{1}{2D} \left[x^2 + bx + \frac{b^2}{4} - (x^2 - bx + \frac{b^2}{4}) \right] = \frac{2bx}{2D}$$

$$\Rightarrow \delta = \frac{bx}{D}$$

4. Au maximum d'intensité d'une frange brillante, les interférences sont constructives, donc $\delta = k\lambda$, avec $k \in \mathbb{Z}$.

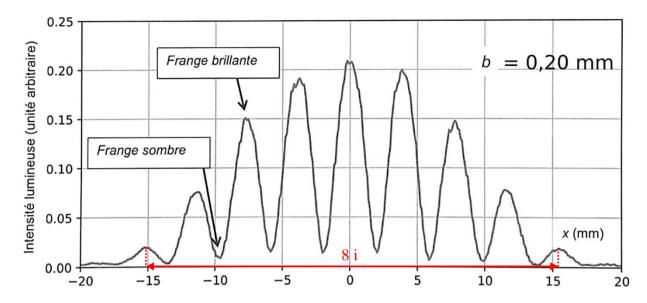
En reportant cela dans l'expression de la question précédente, on obtient : $k\lambda = \frac{bx}{D}$

$$\Rightarrow x_k = \frac{k\lambda D}{b}$$

5. L'interfrange est la distance entre 2 franges consécutives de même nature (par exemple, 2 franges brillantes consécutives).

$$\Rightarrow \ i \ = \ x_{k+1} - x_k \ = \ \frac{(k+1)\lambda D}{b} \ - \ \frac{k\lambda D}{b} \ = \ \frac{\lambda D}{b}$$

6.



D'après le graphique, $8i = 30,4 \text{ mm} \implies i = \frac{30,4}{8} = 3,8 \text{ mm}$

7.
$$i = \frac{\lambda D}{b} \implies \lambda = \frac{ib}{D} = \frac{3.8 \times 10^{-3} \times 0.20 \times 10^{-3}}{119.0 \times 10^{-2}} = 6.4 \times 10^{-7} \text{ m} = 6.4 \times 10^{2} \text{ nm}$$

Identification du laser utilisé

8.

• Commençons par calculer l'incertitude-type sur la longueur d'onde λ :

$$u \; (\lambda) = \; \lambda \times \sqrt{\left(\frac{u(b)}{b}\right)^2 + \left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(D)}{D}\right)^2} \; = \; 6.4 \times 10^2 \times \sqrt{\left(\frac{0.1}{2.0}\right)^2 + \left(\frac{0.1}{3.8}\right)^2 + \left(\frac{0.5}{119.0}\right)^2} \; = \; 36 \; nm$$

• Calculons le rapport $\frac{|\lambda - \lambda_{réf}|}{u(\lambda)}$ pour chacun des lasers proposés.

Pour le laser bleu,
$$\frac{\left|\lambda - \lambda_{réf}\right|}{u(\lambda)} = \left|\frac{6.4 \times 10^2 - 473}{36}\right| = 4.58$$

En opérant de même pour les autres lasers, on obtient les résultats suivants :

laser	bleu	vert	rouge A	rouge B	rouge C
longueur d'onde	473 nm	532 nm	632 nm	650 nm	694 nm
$\frac{\left \lambda - \lambda_{\text{réf}}\right }{u(\lambda)}$	4,58	2,95	0,18	0,31	1,53

Seuls les lasers rouges A, B et C conviennent car il n'y a que pour eux que le rapport $\frac{\left|\lambda-\lambda_{\text{ref}}\right|}{u(\lambda)}$ est strictement inférieur à 2.