SESSION 2013 DGME204

CONCOURS NATIONAL D'ADMISSION DANS LES GRANDES ECOLES D'INGENIEURS

(Concours national DEUG)

Epreuve commune à 2 options (Mathématiques et Physique)

MECANIQUE - PARTIE II

Durée : 2 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Exercice 1

On considère un demi-disque homogène (D) de rayon R, d'épaisseur h et de masse volumique ρ .

On définit le repère $\Re(O, x, y, z)$ tel que les plans Oxy et Oyz coupent le solide (D) en 2 parties égales (**figure 1**).

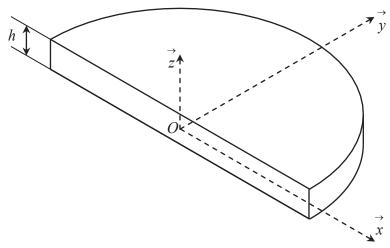


Figure 1

- **1.1** Déterminer la masse m du demi-disque (D) en fonction de R, h et ρ .
- **1.2** Déterminer la position du centre de masse G du demi-disque (D) en fonction de R.
- **1.3** Déterminer le moment d'inertie $I_{Oz}(D)$ du demi-disque (D) par rapport à l'axe \overrightarrow{Oz} en fonction de m et R.

Un système de vibration pour téléphone mobile consiste à faire tourner à grande vitesse un solide (S), d'épaisseur constante h, formé de deux demi-disques de rayon R et r = kR avec $k \le 1$ et accolés comme représenté sur la **figure 2**. (S) et (D) présentent les mêmes plans de symétrie et (S) est un solide homogène de masse volumique ρ .

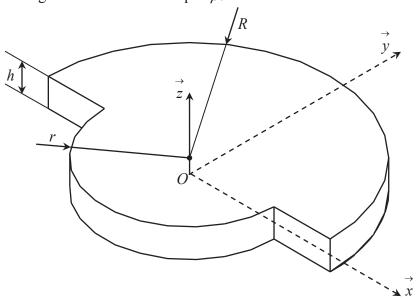


Figure 2

- **1.4** Déterminer la masse M du solide (S) en fonction de m et k.
- **1.5** Déterminer le moment d'inertie $I_{Oz}(S)$ du solide (S) par rapport à l'axe $O\stackrel{\rightarrow}{z}$ en fonction de m, k et R.

Exercice 2

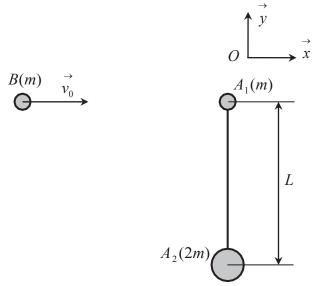


Figure 3

Deux boules d'acier A_1 et A_2 de masses respectives m et 2m sont reliées par une corde inextensible de masse négligeable et de longueur L. On dispose les boules de telle sorte que la corde soit tendue. L'ensemble est posé sur table horizontale parfaitement lisse représentée par le plan xOy du repère $\Re(O, x, y, z)$, de sorte que tous les frottements seront négligés (**figure 3**).

Une troisième boule B de masse m et de vitesse $\overrightarrow{v_0}$ vient frapper la boule A_1 perpendiculairement à la corde tendue ; le choc est de plein fouet et parfaitement élastique.

Le temps de collision étant très court, la boule A_2 ne se met pas immédiatement en mouvement, compte-tenu de son inertie. On s'intéresse au mouvement des 3 boules immédiatement après le choc.

- **2.1** Déterminer les normes v_1 et v_2 des vitesses respectives des boules A_1 et A_2 juste après le choc
- **2.2** En déduire, en fonction de v_0 , l'expression de la vitesse v_G du centre de masse G du système constitué par l'association de A_1 et A_2 .
- **2.3** Réaliser un bilan qualitatif des forces extérieures appliquées à ce système.
- **2.4** En déduire la valeur de l'accélération a_G du point G et la nature du mouvement du centre de masse G.
- **2.5** Déterminer en fonction de v_0 la vitesse v_1^* de la boule A_1 juste après le choc dans le référentiel barycentrique \Re^* du système constitué par l'association de A_1 et A_2 .

La boule A_2 restant immobile juste après le choc, on peut considérer que le système va commencer par tourner autour du point G.

- **2.6** Déterminer la vitesse angulaire ω du système juste après le choc en fonction de v_0 et L.
- **2.7** Déterminer en fonction de m, L et ω , l'expresssion de la tension T de la corde juste après le choc
- **2.8** La tension T de la corde reste-t-elle constante au cours du mouvement? Justifier.

Exercice 3

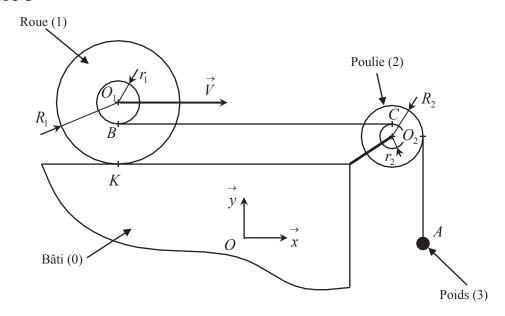


Figure 4

Le référentiel \Re est considéré comme galiléen ; il est rapporté au repère (O, x, y, z). Le référentiel \Re est lié au bâti (0) (**figure 4**).

Une roue (1), de masse m_1 et de rayon extérieur R_1 , roule sans glisser sur un plan horizontal du bâti (0). Elle porte une gorge cylindrique de rayon r_1 sur laquelle est enroulé un fil inextensible de masse négligeable. L'autre extrémité de ce fil est fixée au tambour cylindrique de rayon r_2 de la

poulie (2) de centre O_2 et d'axe fixe O_2 $\stackrel{\rightarrow}{z}$. Un autre fil inextensible de masse négligeable est fixé sur le tambour de rayon R_2 de cette poulie et supporte un poids (3) de masse m_3 et de centre de masse A.

Les fils s'enroulent sans glisser sur les gorges respectives des poulies. Le fil [BC] reste horizontal au cours du mouvement.

Au cours du mouvement, l'axe $O_1\vec{z}$ de la roue (1) reste parallèle à l'axe fixe $O_2\vec{z}$ de la poulie (2). Le centre O_1 de la roue (1) se déplace à la vitesse $\vec{V}=V\vec{x}$.

On note I_1 le moment d'inertie de la roue (1) par rapport à l'axe $O_1 \vec{z}$, I_2 le moment d'inertie de la poulie (2) par rapport à l'axe $O_2 \vec{z}$ et $\vec{g} = -g \vec{y}$ l'accélération de la pesanteur.

- **3.1** Déterminer les énergies cinétiques $T(1/\Re)$, $T(2/\Re)$ et $T(3/\Re)$ des solides (1), (2) et (3) dans leurs mouvements par rapport à \Re en fonction de m_1 , m_3 , I_1 , I_2 , V, r_1 , r_2 , R_1 et R_2 .
- 3.2 Montrer que l'énergie cinétique $T(S/\Re)$ du système $S = \{1+2+3\}$ s'écrit sous la forme $T(S/\Re) = \frac{1}{2} \mu V^2$. Donner l'expression de μ .
- 3.3 Déterminer la puissance P_{ext} des forces extérieures appliquées au système S.
- **3.4** Enoncer le théorème de l'énergie cinétique appliqué au système S.
- **3.5** En déduire l'accélération γ du centre O_1 de la roue (1) par rapport à \Re .