SESSION 2012 DGCH209

CONCOURS NATIONAL D'ADMISSION DANS LES GRANDES ECOLES D'INGENIEURS

(Concours	national	DEUG

Epreuve spécifique à l'option Chimie

CHIMIE - PARTIE II

Durée : 2 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Exercice I

L'hydroxyde de zinc est un hydroxyde amphotère. Par addition de soude à volume pratiquement constant à une solution limpide de 10^{-3} mol.L⁻¹ de sulfate de zinc initialement à pH = 7,0, on assiste d'abord à la précipitation de l'hydroxyde de zinc puis à sa redissolution par formation de l'ion complexe $Zn(OH)_4^{2-}$. Le premier trouble apparait à pH = 7,3 puis la solution redevient limpide à partir de pH = 13,0.

- **I.1.** Définir et calculer le produit de solubilité K_s de l'hydroxyde de zinc. Quelle est la valeur de pK_s ?
- **I.2.** Écrire la réaction de redissolution de l'hydroxyde et calculer sa constante d'équilibre K.
- **I.3.** On appelle β_4 , la constante d'équilibre de formation du complexe à partir des ions Zn^{2+} et OH^- . Calculer β_4 .
- **I.4.** a) Établir l'expression donnant la solubilité de $Zn(OH)_2(S)$ pour des valeurs de pH allant de 7,3 à 13,0.
 - b) Pour quel pH cette solubilité est-elle minimum?
 - c) Quelle est alors sa valeur?
- **I.5.** Entre pH = 7,3 et pH = 13,0, il existe donc en solution Zn^{2+} et $Zn(OH)_4^{2-}$ en présence de $Zn(OH)_2(S)$. On estime que l'une des deux espèces en solution est prépondérante par rapport à l'autre si sa concentration est au moins 100 fois supérieure à celle de l'autre espèce. Déterminer les domaines de pH pour lesquels il y a :
 - a) Prédominance des ions Zn^{2+} .
 - **b)** Prédominance des ions $Zn(OH)_4^{2-}$.
 - c) Calculer $\log s$ en fonction du pH dans le premier cas, s étant la solubilité de l'hydroxyde de zinc.
 - d) Calculer log s en fonction du pH dans le deuxième cas.

Exercice II

On propose une synthèse d'un composé bicyclique de formule $C_{13}\,H_9\,$ $Cl\,$ $N_2\,O_3$.

- II.1. Le benzène réagit avec le mélange sulfonitrique pour donner le composé A.
 - a) Donner la formule de A.
 - **b)** Indiquer le mécanisme de la réaction.
- **II.2.** Le composé $\bf A$ est soumis à l'action de Fe en milieu chlorhydrique. On obtient $\bf B_0$. $\bf B_0$, après neutralisation, donne $\bf B$. Donner la formule et le nom de $\bf B$.

- II.3. Le composé **B** réagit avec le chlorure d'ethanoyle $CH_3 CO Cl$ en présence de pyridine pour donner $\mathbb{C} + HCl$. Quelle est la formule de \mathbb{C} (amide)?
- II.4. Le composé C est traité par le mélange sulfonitrique. On obtient un mélange de deux composés D et D' dont l'un (D) est majoritaire.
 - a) Donner les formules de D et D'.
 - **b)** Pourquoi **D** est-il majoritaire?
- **II.5.** Le benzène, à nouveau, réagit cette fois avec le 2 chloropropane en présence de $AlCl_3$ anhydre. On obtient **E**.
 - a) Quel est le rôle de AlCl₃?
 - b) Quelle est la formule de E?
- II.6. Le composé E est soumis à l'action de l'oléum pour donner majoritairement F.
 - a) Qu'est ce que l'oléum?
 - **b)** Donner la formule de **F**.
- II.7. Le composé \mathbf{F} réagit avec Cl_2 en présence de $AlCl_3$ anhydre pour donner le composé \mathbf{G} .
 - a) Quelle est la formule de G?
 - b) Justifier cette formule.
- **II.8.** En présence de H_2SO_4 dilué et chaud, le composé **G** subit une réaction de désulfonation ce qui donne **H**.
 - a) Donner la formule de H.
 - **b)** Quel a été le rôle de la sulfonation de **E** ?
- II.9. Le composé \mathbf{H} est oxydé par KM_nO_4 concentré et chaud en milieu H_3O^+ pour donner le composé \mathbf{I} . \mathbf{I} est un acide carboxylique. Quelle est la formule de \mathbf{I} ?
- **II.10.** Le composé **I** réagit avec le chlorure de thionyle $SOCl_2$ pour donner **J**. Quelle est la formule de **J**?
- **II.11.** En présence de $AlCl_3$ anhydre, le composé ${\bf J}$ réagit avec ${\bf D}$ pour donner ${\bf K}$.
 - a) Comment est appelé ce type de réaction ?
 - **b)** Donner et justifier la formule de **K**.
- **II.12.** Le composé K est hydrolysé à chaud par HCl concentré pour donner L_0 qui, en milieu basique, conduit au composé final L.
 - a) Quelle est la formule de L_0 ?
 - b) Donner la formule du composé final L.

Fin de l'énoncé.