SESSION 2012 DGCH108

CONCOURS NATIONAL D'ADMISSION DANS LES GRANDES ECOLES D'INGENIEURS

(Concours national DEUG)

Epreuve commune à 2 options (Physique et Chimie)

CHIMIE - PARTIE I

Durée : 2 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Exercice I

Une solution de N_2O_5 dans CCl_4 est introduite à l'instant t=0 dans un thermostat à 45 °C. Il se produit alors la réaction totale :

$$N_2O_5(sol) \to N_2O_4(sol) + \frac{1}{2} O_2(g)$$
.

La réaction est du premier ordre par rapport à N_2O_5 . On recueille 19 mL de O_2 au bout de 40 minutes et 35 mL lorsque la réaction est terminée, les deux volumes étant mesurés à 45 °C sous une pression de 1 atm.

- **I.1.** a) Indiquer le volume molaire de O_2 à 45 °C.
 - **b)** Quelle était la quantité n_0 de moles de N_2O_5 dans la solution à l'instant t=0?
- **I.2.** a) Écrire la loi de vitesse de la réaction.
 - **b)** En quelle unité s'exprime la constante de vitesse k de la réaction ?
 - c) Calculer k.
- **I.3.** a) Définir le temps de demi-réaction $t_{1/2}$.
 - **b)** Calculer $t_{1/2}$ en précisant l'unité.

Exercice II

On considère la réaction de combustion de l'éthyne (ou acétylène) :

$$C_2H_2(g) + \frac{5}{2}O_2(g) = 2CO_2(g) + H_2O(\ell).$$

- II.1. a) Indiquer la formule développée de l'éthyne et préciser la géométrie de la molécule.
 - **b)** Comment peut-on calculer l'enthalpie standard $\Delta_r H^0$ à 298 K de cette réaction à partir du tableau des données fournies dans l'énoncé?
 - c) Calculer $\Delta_r H^0$ (298 K) en précisant l'unité.
- II.2. a) Calculer l'enthalpie standard de la réaction à 298 K mais avec formation de $H_2O(g)$.
 - **b)** Comment peut-on calculer l'enthalpie standard de la réaction à 400 K et avec formation de $H_2O(g)$ à partir du résultat précédent ?
 - c) Calculer cette valeur en précisant l'unité.

Données dans l'état standard à 298 K

	$C_2H_2(g)$	$O_2(g)$	$CO_2(g)$	$H_2O(\ell)$	$H_2O(g)$
$\Delta_f H^0$ $(kJ.mol^{-1})$	226,8	0	- 393,5	- 285,8	- 241,8
C_p^0 $(J.K^{-1}.mol^{-1})$	44,1	29,4	37,1	75,5	33,6

On admettra que les capacités calorifiques molaires C_p^0 ne varient pas avec la température.

Exercice III

On considère le (S)-1-chloro-1-phényléthane (composé A).

- III.1. a) Quelle est la formule de ce composé?
 - **b)** La molécule **A** est chirale. Pourquoi ?
 - c) Dessiner la molécule A en représentation de CRAM selon la configuration S.
 - d) Justifier la configuration S de cette représentation.

- III.2. Le composé A est traité par une solution aqueuse de soude diluée. À la fin de la réaction (pratiquement totale), on obtient une solution optiquement inactive.
 - a) Écrire la réaction.
 - **b)** Quel est le mécanisme impliqué ?
 - c) Décrire ce mécanisme et préciser l'origine de l'inactivité optique de la solution.
 - d) Indiquer, en représentation de CRAM, le ou les produit(s) obtenu(s).

Fin de l'énoncé.