PHYSIQUE-CHIMIE - Durée 30 minutes - 25 points

Les voitures d'aujourd'hui et la sécurité routière

Une voiture classique fonctionne avec un moteur thermique alimenté avec de l'essence ou du gazole.

Source : https://www.paycar.fr/guide-auto/

1. La sour	ce d'energie de la v	oiture classique. (4 points)		
	a source d'énergie m	-	·		
1.2. Indiqu	er s'il s'agit d'une soเ	urce d'énergie renou	ıvelable ou pas.		
2. La voitu	ıre classique. (11 po	oints)			
La combustion de l'essence ou du gazole produit un composé nommé dioxyde de carbone.					
2.1. Parmi les quatre formules chimiques données ci-dessous, indiquer en cochant la bonne case celle du dioxyde carbone.					
	\square C ₂ O	□ CO ₂	□ CO ²	□ CO2	
2.2. Donne	er le nombre et le non	n des atomes prése	nts dans la molécule	de dioxyde de carbone	} .
					•••
Le dioxyde O ₂ .	e de carbone peut éga	llement être obtenu	oar combustion du ca	arbone C dans du dioxy	gène
2.3. Écrire	ci-dessous l'équatior	n traduisant cette co	mbustion.		

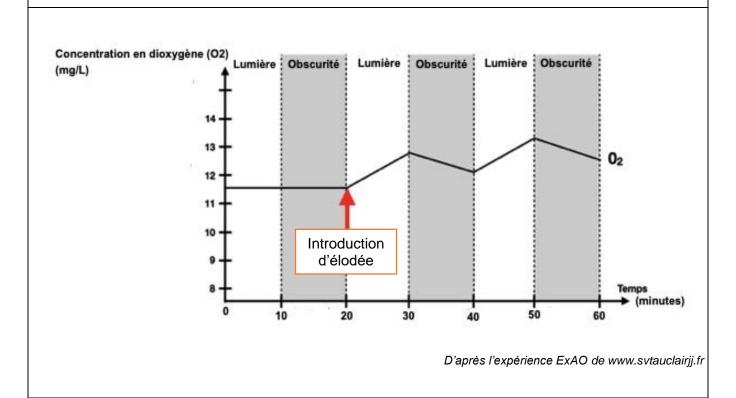
22PROAGRISCMEAG1 Page 2 sur 7

Le dioxyde de carbone est un gaz à effet de serre. Les constructeurs automobiles développent actuellement de nouveaux types de véhicule pour réduire les émissions de gaz à effet de serre, dans le cadre de leur contribution à la protection de l'environnement.
2.4. Citer une forme d'énergie mise en œuvre dans ces nouveaux types de véhicule.
3. L'énergie mise en jeu lors d'un déplacement de la voiture. (10 points)
La voiture a une masse $m=1000$ kg. Elle roule en ville à la vitesse $v=50$ km/h, ce qui correspond à $v=14$ m/s.
3.1. Montrer que son énergie cinétique E _c a une valeur voisine de 100 000 J.
Donnée : expression de l'énergie cinétique $E_c = \frac{1}{2} \text{m.v}^2$
Un message de la sécurité routière affirme que cette énergie est celle qu'aurait cette voiture en arrivant sur le sol si elle tombait du $4^{\text{ème}}$ étage d'un immeuble, soit d'une hauteur h = 10 m.
3.2. Donner le nom de l'énergie qu'aurait cette voiture si on la hissait à la hauteur h.
Cette énergie se calcule à l'aide de la formule : $E_p = m.g.h$ avec m masse en kg, et $g = 9.8 \ N/kg.$
On considère que lors de la chute il y a conservation de l'énergie de la voiture.
3.3. Indiquer, en le justifiant, si le message de la sécurité routière est correct ou pas.

22PROAGRISCMEAG1 Page 3 sur 7

BIOLOGIE-ÉCOLOGIE - Durée 30 minutes – 25 points

Léa possède un aquarium d'eau douce hébergeant trois poissons rouges. Des élodées du Canada, *Elodea canadensis*, y sont installées. Les élodées du Canada sont des végétaux aquatiques.


Partie 1 : Les échanges gazeux entre l'environnement et l'élodée (15 points)

Léa se demande pourquoi le vendeur de l'aquarium lui a indiqué qu'il était très important d'installer des élodées dans son aquarium et de les éclairer au moins 12 heures par jour pour maintenir en vie ses poissons rouges.

Document 1 : Mesure de la concentration en dioxygène dans un aquarium contenant des élodées du Canada

Dans un aquarium rempli d'eau, on mesure l'évolution de la concentration en dioxygène (O₂) à la lumière et à l'obscurité. Vingt minutes après le début de l'expérience, des rameaux d'élodée du Canada sont placés dans cet aquarium.

Les résultats de l'expérience sont présentés dans le graphique ci-dessous.

22PROAGRISCMEAG1 Page 4 sur 7