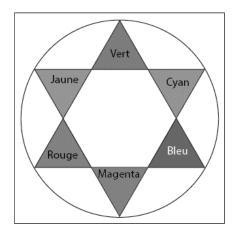

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tio	n :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)			-							'	1.1

Les comprimés de permanganate de potassium sont-ils périmés ? (10 points) Une technicienne trouve dans les réserves du laboratoire de chimie des tubes de comprimés portant l'indication "PERMANGANATE DE POTASSIUM LAFRAN® 0,25 g comprimé pour application locale". Elle envisage d'utiliser ces comprimés pour une expérience, mais veut s'assurer, par dosage, qu'ils sont toujours conformes à la formulation donnée sur l'étiquette.


Données:

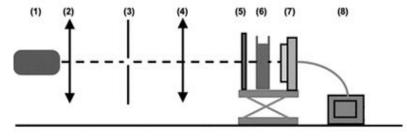
- Masse molaire du permanganate de potassium KMmO₄ : $M = 158 \text{ g} \cdot \text{mol}^{-1}$;
- Spectre d'absorption d'une solution aqueuse de permanganate de potassium

- Cercle chromatique

Couleurs et longueurs d'onde

Couleur	λ en nm
Violet	380 à 425
Indigo	425 à 460
Bleu	460 à 480
Vert	520 à 560
Jaune	565 à 575
Orange	575 à 595
Rouge	600780

- Relation de conjugaison pour une lentille mince :

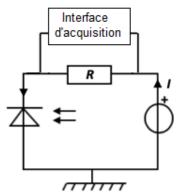

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

avec f' la distance focale de la lentille, O le centre optique de la lentille, A un point objet et A' l'image de A à travers la lentille mince.

1. Conception d'un colorimètre

Ne disposant pas de spectrophotomètre, la technicienne réalise le montage correspondant au schéma ci-contre pour construire un colorimètre.

La lentille (4) permet de fabriquer un faisceau de lumière parallèle ; le constructeur indique, pour cette lentille, une valeur de distance focale de 5,0 cm.



- (1) Source lumineuse blanche
- (2) Condenseur
- (3) Diaphragme
- (4) Lentille convergente
- (5) Filtre vert
- (6) Cuve contenant la solution
- (7) Capteur de lumière
- (8) Interface d'acquisition
- **1.1.** La technicienne souhaite vérifier la valeur de la distance focale de cette lentille. Elle place la lentille à 15,0 cm d'un objet lumineux AB. L'image A'B' se forme alors sur un écran qu'elle doit placer à 7,5 cm de la lentille.
- **1.1.1.** Montrer que les mesures faites par la technicienne sont cohérentes avec la valeur indiquée par le constructeur.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tio	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANCAISE Né(e) le :	(Les nu	uméro	s figure	ent sur	la con	vocatio	on.)											1.1

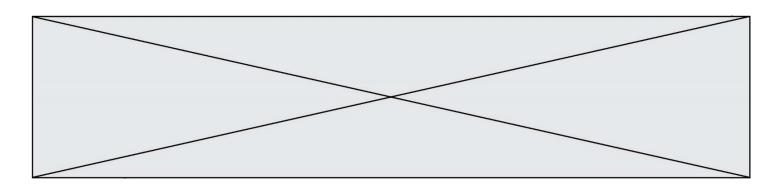
- **1.1.2.** Quelle autre expérience rapide aurait-elle pu mettre en œuvre pour estimer la distance focale de la lentille ?
- **1.2.** À l'aide des données fournies, justifier le choix de placer le filtre vert (5) devant la cuve contenant la solution pour réaliser les mesures.
- 1.3. Le capteur de lumière (7) est constitué du montage ci-contre. Il comporte une photodiode. La photodiode laisse circuler dans le circuit un courant électrique d'intensité / proportionnelle à l'éclairement qu'elle reçoit. On connecte l'interface d'acquisition aux bornes de la résistance R.

 Justifier que, dans ce montage, la tension électrique U mesurée par la centrale d'acquisition aux bornes de la résistance R, est proportionnelle à l'éclairement reçu par la photodiode.

2. Dosage du permanganate de potassium dans un comprimé

2.1. Méthode de dosage utilisée

Pour vérifier la conformité des comprimés, la technicienne prépare une gamme étalon à partir d'une solution de permanganate de potassium de concentration connue. Elle utilise ensuite le colorimètre qu'elle a construit.



Un traitement des données expérimentales acquises par l'interface d'acquisition, permet à la technicienne d'obtenir la valeur de l'absorbance A de chaque solution étalon. Elle trace le graphe représentant l'évolution de l'absorbance A en fonction de la concentration C de la solution en permanganate de potassium. Le graphique est donné en annexe. Indiquer si avec la gamme étalon utilisée, la relation de Beer-Lambert peut s'appliquer.

2.2. Détermination de la masse de permanganate de potassium dans un comprimé.

Pour déterminer la composition en permanganate de potassium d'un comprimé, la technicienne met en oeuvre les étapes suivantes :

- Étape 1 : elle prépare une solution aqueuse S_0 de volume $V_0 = 0,500$ L dans laquelle est dissoute un comprimé.
- Étape 2 : elle dilue 10 fois la solution S₀ pour obtenir une solution S₁
- Étape 3 : elle mesure la tension aux bornes de la résistance pour la solution S₁ et obtient, après traitement de la mesure, une absorbance A = 0,28.

2.2.1. Dans la liste ci-dessous, identifier le matériel nécessaire à une réalisation précise de la dilution présentée dans l'étape 2 et rédiger le protocole

Béchers gradués : 50 mL ; 250 mL

Éprouvettes graduées : 10 mL ; 50 mL ; 250 mL

Pissette d'eau distillée

Pipettes jaugées : 5,0 mL ; 10,0 mL ; 20,0 mL
 Pipettes graduées : 5,0 mL ; 10,0 mL ; 20,0 mL

Fioles jaugées : 100,0 mL ; 250,0 mL

. Pipeteur

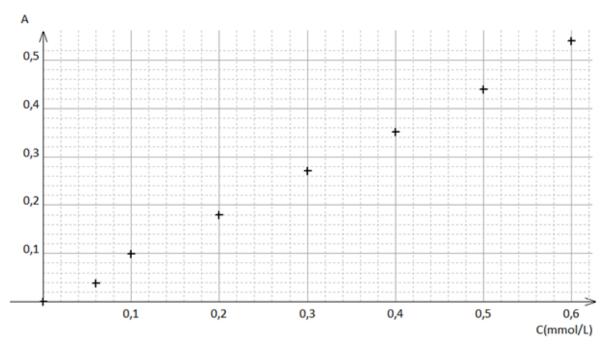
- **2.2.2.** Exploiter le graphique **en annexe à rendre avec la copie** pour déterminer la valeur de la concentration en quantité de matière C_1 en permanganate de potassium dans la solution diluée S_1 .
- **2.2.3.** Le comprimé a-t-il conservé sa composition d'origine ?

3. Rédaction d'un compte rendu de l'expérience.

La technicienne utilise, sur son ordinateur, un logiciel de traitement d'images pour schématiser l'expérience en couleur.

- **3.1.** Un écran d'ordinateur est constitué de pixels eux-mêmes divisés en trois sous- pixels Rouge (R), Vert (V) et Bleu (B) émettant chacun une lumière d'intensité réglable entre 0 et 100%.
- Un sous pixel réglé à 100% est totalement éclairé.
- Un sous pixel réglé à 0% est totalement éteint.

Identifier, parmi les propositions suivantes, celle qui permet de reproduire sur l'écran la teinte de la solution de permanganate de potassium. Justifier ce choix.


Proposition 1	Proposition 2	Proposition 3	Proposition 4
R: 54,6 %	R: 7,5 %	R: 88,6 %	R: 22,5 %
V : 50,2 %	V: 88,2 %	V : 10,8 %	V : 10,8 %
B: 58,2 %	B: 10,2 %	B: 95,3 %	B: 79,2 %

- **3.2.** Préciser le type de synthèse des couleurs (additive ou soustractive) mise en jeu :
- **3.2.1.** Lorsque « le cerveau fait la synthèse des lumières reçues par l'œil » face à un écran.
- **3.2.2.** Lors de l'impression du document sur une imprimante à jet d'encre.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

ANNEXE À JOINDRE À LA COPIE

Graphique : Absorbance des solutions de la gamme étalon en fonction de la concentration

